Shapelets Documentation#

Attention

For current version is necesary add at the top of your python DataApp script the login.

>>> import shapelets as sh
>>> sh.login(user_name="my_user_name",password="my_password")

Shapelets is an integrated platform for data scientists that provides significant speedups and greater efficiency to help data scientists extract insights from data, create powerful visualisations and share them instantly with the business.

Shapelets incorporates an efficient data engine, implemented in C++ but controlled through a Python API, that can be connected to multiple data stores (Azure Blob, S3, SMB, FTP, etc.) to load various types of data files (parquet, arrow, CSV, excel) in an extremely efficient way and keeping a minimum memory usage. This data engine relies on bitmap indexing technology to optimize time series storage and query times in large databases.

Shapelets API is also used to build data apps. Data apps are web applications with professional visualizations that data scientists can quickly prototype and share with business stakeholders across an organization, allowing them to validate the insights they discovered. These data apps can seamlessly scale from prototypes to production-ready applications. In order to build data apps, the data scientist simply uses the Shapelets API to create visual components (buttons, tabs, line charts, etc.) and the interactions between those components. This is done using a simple, intuitive syntax.

You can find some examples, use cases, and demos in our demo repository.