Transform
Allows users to apply a transformation to the data.
Parameters
1. Args
Function Signature
app.mosaic(
vg.transforms.argmax()
)
app.mosaic(
vg.transforms.argmin()
)
Parameter | Description |
---|---|
argmax (List[Union[str, float, bool]]) | An argmax aggregate transform. |
argmin (List[Union[str, float, bool]]) | An argmin aggregate transform. |
2. Avg
Function Signature
app.mosaic(
vg.transforms.avg()
)
Parameter | Description |
---|---|
avg (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | An averag(mean) value of the given column |
3. Bin
Function Signature
app.mosaic(
vg.transforms.bin(
interval, step, steps,
minstep, nice, offset
)
)
A. Bin Options
Parameter | Description |
---|---|
interval (BinInterval) | The interval bin unit to use, typically used to indicate a date/time unit for binning temporal values, such as hour , day , or month .If date , the extent of data values is used to automatically selectan interval for temporal data. The value number enforces normalnumerical binning, even over temporal data. If unspecified, defaults to number for numerical data and date for temporal data. |
step (Union[int, float]) | The step size to use between bins. When binning numerical values (or interval type number ), this setting specifies the numerical step size.For data/time intervals, this indicates the number of steps of that unit, such as hours, days, or years. |
steps (Union[int, float]) | The target number of binning steps to use. To accommodate human-friendly ("nice") bin boundaries, the actual number of bins may diverge from this exact value. This option is ignored when step is specified. |
minstep (Union[int, float]) | The minimum allowed bin step size (default 0 ) when performing numericalbinning. For example, a setting of 1 prevents step sizes less than 1.This option is ignored when step is specified. |
nice (bool) | A flag requesting "nice" human-friendly step sizes (default true ). |
offset (Union[int, float]) | Offset for computed bins (default 0 ). For example, a value of 1 willresult in using the next consecutive bin boundary. |
B. Bin
Function Signature
app.mosaic(
vg.transforms.bin()
)
Parameter | Description |
---|---|
bin (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Bin a continuous variable into discrete intervals. The col argument specifies a data column or expression to bin. Both numerical and temporal (date/time) values are supported. |
4. Centroid
Function Signature
app.mosaic(
vg.transforms.centroid()
)
app.mosaic(
vg.transforms.centroidX()
)
app.mosaic(
vg.transforms.centroidY()
)
Parameter | Description |
---|---|
centroid (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | A centroid transform allows to compute the 2D centroid of geometry-typed data. |
centroidX (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | A centroidX transform allows to compute the centroid x-coordinate of geometry-typed data. |
centroidY (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | A centroidY transform allows to compute the centroid y-coordinate of geometry-typed data. |
5. Count
Function Signature
app.mosaic(
vg.transforms.count()
)
Parameter | Description |
---|---|
count (Union[None, Union[Union[str, float, bool], List[Union[str, float, bool]]]]) | Computes the count of records in an aggregation group. |
6. Covariance
Function Signature
app.mosaic(
vg.transforms.covariance()
)
app.mosaic(
vg.transforms.covarPop()
)
Parameter | Description |
---|---|
covariance (List[Union[str, float, bool]]) | Compute the sample covariance of between the given columns. |
covarPop (List[Union[str, float, bool]]) | Compute the population covariance of between the given columns. |
7. CumeDist
Function Signature
app.mosaic(
vg.transforms.cume_dist()
)
Parameter | Description |
---|---|
cume_dist (Union[str, float, bool]) | A cume_dist window transform which computes the cumulative distribution value over an ordered window partition. Equals the number of partition rows preceding or peer with the current row, divided by the total number of partition rows. |
8. Date_Day
Function Signature
app.mosaic(
vg.transforms.dateDay()
)
Parameter | Description |
---|---|
dateDay (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Transform a Date value to a day of the month for cyclic comparison. Year and month values are collapsed to enable comparison over days only. |
9. Date_Month_Day
Function Signature
app.mosaic(
vg.transforms.dateMonthDay()
)
Parameter | Description |
---|---|
dateMonthDay (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Transform a Date value to a month and day boundary for cyclic comparison.Year values are collapsed to enable comparison over months and days only. |
10. Date_Month
Function Signature
app.mosaic(
vg.transforms.dateMonth()
)
Parameter | Description |
---|---|
dateMonth (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Transform a Date value to a month boundary for cyclic comparison. Year values are collapsed to enable comparison over months only. |
11. First
Function Signature
app.mosaic(
vg.transforms.first()
)
Parameter | Description |
---|---|
first (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Return the first column value found in an aggregation group. |
12. GeoJson
Function Signature
app.mosaic(
vg.transforms.geo_json()
)
Parameter | Description |
---|---|
geojson (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute a GeoJSON-formatted string from geometry-typed data. |
13. Lag_Lead
Function Signature
app.mosaic(
vg.transforms.lag()
)
app.mosaic(
vg.transforms.lead()
)
Parameter | Description |
---|---|
lag (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | A lag window transform - Returns the value at the row that is offset (second argument, default 1 ) rows before the current row within the window frame. If there is no such row, instead return default (third argument, default null ). Both offset and default are evaluated with respect to the current row. |
lead (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | A lead window transform - Returns the value at the row that is offset (second argument, default 1 ) rows after the current row within the window frame. If there is no such row, instead return default (third argument, default null ). Both offset and default are evaluated with respect to the current row. |
14. Last
Function Signature
app.mosaic(
vg.transforms.last()
)
Parameter | Description |
---|---|
first (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Return the last column value found in an aggregation group. |
15. Max
Function Signature
app.mosaic(
vg.transforms.max()
)
Parameter | Description |
---|---|
max (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute the maximum value of the given column. |
16. Median
Function Signature
app.mosaic(
vg.transforms.median()
)
Parameter | Description |
---|---|
median (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute the median value of the given column. |
17. Min
Function Signature
app.mosaic(
vg.transforms.min()
)
Parameter | Description |
---|---|
min (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute the minimum value of the given column. |
18. Mode
Function Signature
app.mosaic(
vg.transforms.mode()
)
Parameter | Description |
---|---|
mode (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute the mode value of the given column. |
19. Nth Value
Function Signature
app.mosaic(
vg.transforms.first_value()
)
app.mosaic(
vg.transforms.last_value()
)
app.mosaic(
vg.transforms.nth_value()
)
Parameter | Description |
---|---|
first_value (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Get the first value of the given column in the current window frame. |
last_value (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Get the last value of the given column in the current window frame. |
nth_value (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Get the nth value of the given column in the current window frame, counting from one. The second argument is the offset for the nth row. |
20. Ntile
Function Signature
app.mosaic(
vg.transforms.ntile()
)
Parameter | Description |
---|---|
ntile (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute an n-tile integer ranging from 1 to the provided argument (num_buckets), dividing the partition as equally as possible. |
21. Product
Function Signature
app.mosaic(
vg.transforms.product()
)
Parameter | Description |
---|---|
product (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute the product of the given column. |
22. Quantile
Function Signature
app.mosaic(
vg.transforms.quantile()
)
Parameter | Description |
---|---|
quantile (List[Union[str, float, bool]]) | Compute the quantile value of the given column at the provided probability threshold. For example, 0.5 is the median. |
23. Ranks
Function Signature
app.mosaic(
vg.transforms.rank()
)
app.mosaic(
vg.transforms.dense_rank()
)
app.mosaic(
vg.transforms.percent_rank()
)
Parameter | Description |
---|---|
rank (Union[None, Union[Union[str, float, bool], List[Union[str, float, bool]]]]) | A window function that returns the rank of the current row with gaps, same as the row_number of its first peer. |
dense_rank (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | A window function that returns the rank of the current row without gaps, counting peer groups. |
percent_rank (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | A window function that returns the relative rank of the current row, calculated as (rank() - 1) / (total partition rows - 1). |
24. Row_Number
Function Signature
app.mosaic(
vg.transforms.row_number()
)
Parameter (Type) | Description |
---|---|
row_number (Union[None, Union[str, float, bool], List[Union[str, float, bool]]]) | A window function that computes the 1-based row number over an ordered window partition. |
25. Shared
Function Signature
app.mosaic(
vg.transforms.shared(
orderby, partitionby, rows,
range, distinct
)
)
Parameter (Type) | Description |
---|---|
orderby (Union[TransformField, List[TransformField]]) | Specifies the fields by which the data should be ordered in the window transform. |
partitionby (Union[TransformField, List[TransformField]]) | Defines the fields used to partition the data in the window transform. |
rows (Union[List[Optional[Union[int, float]]], Parameter]) | Specifies the row offset range for the window function. |
range (Union[List[Optional[Union[int, float]]], Parameter]) | Specifies the range of values for the window function. |
distinct (bool) | Indicates whether to apply the aggregation only to distinct values in the aggregate transform. |
26. StdDev
Function Signature
app.mosaic(
vg.transforms.stddev()
)
app.mosaic(
vg.transforms.stddevPop()
)
Parameter | Description |
---|---|
stddev (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | A sample standard deviation aggregate transform. |
stddevPop (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | A population standard deviation aggregate transform. |
27. Sum
Function Signature
app.mosaic(
vg.transforms.sum()
)
Parameter | Description |
---|---|
sum (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute the sum of the given column. |
28. Variance
Function Signature
app.mosaic(
vg.transforms.variance()
)
app.mosaic(
vg.transforms.varPop()
)
Parameter | Description |
---|---|
variance (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute the sample variance of the given column. |
varPop (Union[Union[str, float, bool], List[Union[str, float, bool]]]) | Compute the population variance of the given column. |
29. Transform
Function Signature
app.mosaic(
vg.transforms.transform(
orderby, partitionby,
rows, range, distinct
)
)
Parameter (Type) | Description |
---|---|
orderby (Union[TransformField, List[TransformField]]) | Specifies the fields by which the data should be ordered in the window transform. |
partitionby (Union[TransformField, List[TransformField]]) | Defines the fields used to partition the data in the window transform. |
rows (Union[List[Optional[Union[int, float]]], Parameter]) | Specifies the row offset range for the window function. |
range (Union[List[Optional[Union[int, float]]], Parameter]) | Specifies the range of values for the window function. |
distinct (bool) | Indicates whether to apply the aggregation only to distinct values in the aggregate transform. |